
Kestrel Institute

U) 5 October 1990

Dr. Andre van Tilborg, Code 1133
Computer Science Division
Office of Naval Research

C800 N. Quincy St.
Arlington, VA 22217

Dear Andre,

Find enclosed two copies of the FY90 end-of-year letter for contract N00014-90-J-1733 and
some recent papers.

Sincerely,

Douglas R. Smith

enclosures

-, 1990

3A ,11

3260 Hillview Avenue, Palo Alto, California 94304 (415) 493-6871

P.I. Name: Douglas R. Smith
Insitution: Kestrel Institute
Telephone: (415) 493-6871
E-mail: smith@kestrel.edu
Contract Title: Theory of Algorithm Structure and Design
Contract Number: N00014-90-J-1733
Reporting Period: 1 Oct 89 - 30 Sep 90

1. Productivity Measures

Refereed papers submitted but not published: 4

Refereed papers published: 5

Unrefereed reports and articles: 1

Books or parts thereof not published: 4

Books or parts thereof published: 0

Patents filed but not granted: 0

Patents granted: 0

Invited presentations: 17

Contributed presentations: 3

Honors received: 2

Prizes or awards received: 0

Promotions obtained: 0 i .. "-

Graduate students supported: 0

Post-docs supported: 0
..

Minorities supported: 0 "

STATFMENT "A" Per Jr. A. van iillDOrg

ONR/Code 1133
TELECON 10/11/90 VG

immm • i mm 1

P.I. Name: Douglas R. Smith
Insitution: Kestrel Institute
Telephone: (415) 493-6871
E-mail: smith@kestrel.edu
Contract Title: Theory of Algorithm Structure and Design
Contract Number: N00014-90-J-1733
Reporting Period: 1 Oct 89 - 30 Sep 90

2. Summary of Technical Results

Algorithms and data structures are among the primary constituents of computer software
and thus are among basic objects of study in Computer Science. This project is concerned
with the structure and automated design of algorithms and data structures. Our scientific
hypothesis is that there exist general algorithm, data structure, and design concepts that
underlie and explain most of the detailed structure of conventional software systems. By ab-
stracting and formalizing these concepts and showing how to mechanize their application, we
can prepare the way for the coming generation of automated software design environments.

Our approach involves identifying classes of algorithms that solve a broad range of useful
problems. In particular we have emphasized formalizing abstract algorithms that make min-
imal assumptions about the structure of a problem. Once a class of algorithms has been
identified we represent its essence as a theory, called an algorithm theory, 41]. There are a
number of advantages to this axiomatic approach. First, it abstracts away concLyhWTabout -
programming language and style (e.g., functional vs. logical vs. imperative, recursive vs.
iterative) and control strategy (e.g., top-down vs. bottom-up, sequential vs. parallel execu-
tion). These can be factored in as later decisions in the design process. Second, once and for
all we can derive abstract programs (schemes) as theorems in the abstract theory and then
apply them to concrete problems. Third, we can develop formal, automatable, and highly-
reusable design tactics on the basis of the abstract theory. They provide generic methods for
designing concrete algorithms from specifications for particular problems. Fourth, there is a
strong analogy to abstract data types. For example, the concept of global search underlies a
number of well-known data structures such as binary search trees, quad-trees, and B-trees,
suggesting that algorithm design tactics could be extended to data structure design tactics.
Finally we hypothesize that algorithmic theories can be combined to allow the inference of
hybrid algorithms.

Project results during the last year are listed below.

1. Problem Reduction Generators - Problem reduction is a pervasive technique for solv-
ing problems by reducing a problem instance to a structure of subproblem instances.
Solutions to the subproblem instances are composed to form a solution to the initial
instance. Problem reduction generators are used to enumerate all solutions to a given
problem. Problems are given by means of a formal specification (we use a specifica-
tion language that extends first-order predicate calculus notation with set-theoretic
datatypes).

2

We produced an algorithm theory a.id design tactic for the class of problem reduction
generators [3]. This algorithm theory, called complete problem reduction theory, pro-
vides the logical basis for dynamic programming, branch-and-bound, game-tree search,
and other well-known algorithm paradigms.

The design tactic extends the structure of a specified problem with the structure of
complete problem reduction theory. If we decide to compute the characteristic re-
currence equation of problem reduction theory from the bottom up, then we get the
usual dynamic programming algorithms. Top-down control leads to branch-and-bound
algorithms such as AO* and game-tree algorithms such as alpha-beta and SSS*.

The design tactic constructs a complete problem reduction theory for the specified
problem through a combination of selecting of standard information from a library,
deductive propagation of the consequences of choices, and verification of axioms. A
major result of our project has been the development of deductive techniques for using
axioms to help construct complex objects rather than simply to use them as verifica-
tion conditions. For example, in complete problem reduction theory we use an axiom
("strong soundness") to deduce a specification for the reduction step of the algorithm
given a choice of a standard composition step (which is usually a standard constructor
algebra for the output domain).

The design tactic has been applied to about a dozen problems in order to explore its
generality and the feasibility of its steps. The paper [3] presents a detailed treatment
of the problem of enumerating optimal binary search trees. We plan to implement the
tactic in order to more fully explore its feasibility and range of application.

This algorithm theory has been presented in a more general style than previously:
the theory is indexed by a signature, as in algebraic theories. In previously published
algorithm theories and design tactics we have had to fix the signature thereby limiting
the applicability of the theory unnecessarily.

2. KIDS and Challenge Problems - KIDS (Kestrel Interactive Development System) is the
testbed for our research on semiautomated program design [1, 2]. The system has com-
ponents for performing algorithm design, deductive inference, program simplification,
partial evaluation, finite differencing optimizations, data type refinement, compilation,
and other development operations. To use KIDS for a new problem, the user first
builds up a (first-order) domain theory that formalizes the concepts of the problem
and provides laws for reasoning about the concepts. The domain theory provides the
vocabulary for expressing a formal specification of the problem. Next the user applies
the design, optimization, and refinement tools as needed in order to obtain an efficient
and correct source-level program that implements the specification.

This past year we have used KIDS to respond to several challenge problems presented
to us by non-Kestrel personnel. By accepting these challenges our aims were to deepen
our understanding of automated algorithm design through applying KIDS to concrete
problems and to demonstrate the effectiveness of KIDS by working problems that were
not selected by personnel with an intimate knowledge of the system.

We briefly discuss two challenge problems: enumerating cyclic projective planes of order
n and enumerating Costas arrays. The first problem was quite difficult, but resulted in

3

an algorithm that was significantly better than most programmers (including ourselves)
could have designed given our simple understanding of the problem. Unfortunately
we found out latter that there is a considerable and deep literature on the problem
under the rubric of combinatorial design theory. Exploiting this knowledge would have
resulted in much better algorithm.

The Costas array derivation was more succcessful [2]. This is a problem arising in
the design of sonar and radar signals with optimal ambiguity functions. The domain
theory was built up over a period of about a week and enabled the derivation of an
efficient backtrack algorithm. After we hand-refined the abstract data structures of
the resulting program and manually translated it into C, we were able to enumerate all
order 17 Costas arrays. This is as high as has been published in the literature by the
various groups of mathematicians exploring this problem. This result is evidence that
the machine-generated algorithm is comparable to the programs created by insightful
anti experienced human programmers.

There were several important lessons from these derivations and others like them.
First, much of the hard work in performing a new derivation lies in building up the
domain theory. As discussed below we have built up a library of some 25 theories,
including basic theories such as finite set theory and finite map theory, as ivell as
more specialized theories for scheduling and Costas arrays. The more basic theories
are highly reusable so over time we can expect that theory building will involve more
selection and adaptation. Our experience points to theory-building as an irreducible
and time-consuming activity in future automated design environments.

Another lesson concerns the nature of the domain theories. What constitutes a well-
formulated theory? Our experience has been that a well-formulated domain theory
has simple laws for reasoning about the basic concepts. A related observation is that
most of the laws needed to support design, optimization, and refinement in KIDS
are distributive laws. Together these observations suggest that when building a new
domain theory, we should seek conceptualizations that admit simple distributive laws.
Our initial formulation of Costas array theory had quite complex laws and we eventually
discarded it. A second attempt was successful and the basic concepts had very elegant
distributive laws and the ensuing design process was straightforward.

3. Theory Development in KIDS - In light of tbe fundamental importa.,ce of domain
theories in KIDS (and for formal methods of software design in gereral), we began
to explore tools for supporting the development of domain theories We prototyped a
simple grammar for theories comprising imports, type definitio.s, concept definitions
(functions), laws, and inference rules. We then built an interactive graphical interface
and a collection of operations that could be used to help users build theories. Loading
a theory recursively loads all imports and installs the concept definitions, laws, and
inference rules in the KIDS active knowledge base. There is also a tool for automat-
ically deriving distributive laws from a concept de4 nition. The resulting laws can be
transformed into nonlogical inference rules. Another operation allows the abstraction
of new concepts from the body of any expression. For example, if a derived distributive
law contains a complex subexpression S, then S can be abstracted out, named, and
added to the theory. In this way the user may enter some definitions via a text editor,
then use the system to derive new laws, rules, and concepts.

4

Of the roughly 700 rules in the KIDS system, we have encapsulated about 30% in
about 25 domain theories. The remaining rules form an unstructured collection. A
more systematic and complete attempt at formalizing the domain knowledge of KIDS
awaits the results of the next item.

4. Theories, Theory Interpretations, and Operations on Theories - Theories and opera-
tions on theories have emerged at Kestrel as a pervasive foundation in our software
design automation studies. Our algorithm design work is expressed in terms of ab-
stract algorithm theories and interpretations between abstract and concrete algorithm
theories. Related concepts of problem theories and program theories come into play.
The use of (algebraic) theories to formalize abstract data types is well-known. We have
been formalizing a grammar and compilation mechanism for theory interpretations as
a way to formally express and use datatype refinements. For example, the implemen-
tation of sets as bit vectors is essentially an interpretation between set theory and bit
vector theory. Generally, interpretations between theories provide the basis for refine-
ment of specifications. The use of theories to express domain theories and various
operations to help build them was discussed above. Thus theories and their operations
play a fundamental role in expressing program design knowledge. Theories can also
be used as a module mechanism in a specification/programming language, providing
modules with a formally defined interface (not only the imported and exported types
and operations, but the axioms that constrain their meaning too). For these reasons
and others we have been exploring theories and their operations, extending the results
of the OBJ3, LARCH, and Extended ML projects. Topics under active investigation
include, parameterizing theories and theory interpretations by theories (a generalized
polymorphism), partial constructors and theory invariants, expressing anC -ompiling
theory interpretations, object theories that include state, and temporal iaeories for
reasoning about time.

5. Problem Reformulation - Our work on problem reformulation has been extended along
several dimensions. Previous work on abstraction of domain and problem specifications
has been extended to domains with hidden states, thereby facilitating scaling up to
module and system abstraction. The foundation for abstraction through symmetry
has progressed; we anticipate application to continuous domains during the coming
year. A variant of Karmarkar's algorithm has been previously developed by hand
using abstraction through symmetry, we anticipate that further work along these lines
will provide the formal foundation for automating this development.

6. Local Search - Using permutation group theory, we have further developed our re-
search on local search algorithms by formalizing a class of combinatorial local search
algorithms based on permuting components of data structures representing feasible
solutions. Previously, a design tactic based on these ideas had been developed and
demonstrated on the synthesis of the Simplex algorithm using KIDS. We are currently
extending our research on local search through a design tactic for primal/dual algo-
rithms.

5

References

[1] SMITH, D. R. KIDS - a semi-automatic program development system. IEEE Transac-
tions on Software Engineering Special Issue on Formal Methods in Software Engineering
16, 9 (September 1990), 1024-1043.

[2] SMITH, D. R. KIDS: a knowledge-based software development system. In Automating
Software Design, M. Lowry and R. McCartney, Eds., Live Oak Press, Menlo Park, 1991.
to appear.

[3] SMITH, D. R. Structure and Design of Problem Reduction Generators. Tech. Rep.,
Kestrel Institute, 1990. submitted to IFIP TC2 Working Conference on Constructing
Programs from Specifications.

[4] SMI TH, D. R., AND LOWRY, M. R. Algorithm theories and design tactics. In Proceed-
ings of the International Conference on Mathematics of Program Construction, LNCS
375, L. van de Snepscheut, Ed., Springer-Verlag, Berlin, 1989, pp. 379-398. (extended
version to appear in Science of Computer Programming).

6

P.I. Name: Douglas R. Smith
Insitution: Kestrel Institute
Telephone: (415) 493-6871
E-mail: smith@kestrel.edu
Contract Title: Theory of Algorithm Structure and Design
Contract Number: N00014-90-J-1733
Reporting Period: 1 Oct 89 - 30 Sep 90

3. Lists of Publications, Presentations, and Reports

3.1. Publications

Lowry, M.R., Category Theory and Homomorphic Abstraction, Proceedings of Workshop
on Change of Representation and Problem Reformulation, Menlo Park, CA, March 1990
(also appeared in Proceedings of Workshop on Algebraic Approaches to Problem Solving
and Perception Tarrytown, New York, June 1990).

Lowry, M.R., Abstracting Domains With Hidden State, Proceedings of AAAI-90 Workshop
on Automatic Generation of Approximations and Abstraction, Boston, MA, August 1990.

Lowry, M.R., Structure and Design of Local Search Algorithms, to appear in Automating
Software Design, Eds. M. Lowry and R. McCartney AAAI Press, Menlo Park, CA, 1991.

Lowry, M.R., Software Engineering in the 21st Century, to appear in Automating Software
Design, Eds. M. Lowry and R. McCartney AAAI Press, Menlo Park, CA, 1991.

Lowry, M. and McCartney, R., Editors, Automating Software Design, AAAI Press, Menlo
Park, CA, 1991.

Smith, D.R., Automating the Development of Software, Proceedings of the NATO Sympo-
sium on Military Information Systems Engineering, Malvern, England, May 1990.

Smith, D.R., KIDS: A Semi-Automated Program Development System, IEEE Transactions
on Software Engineering 16(9), Special Issue on Formal Methods, September 1990, 1024-
1043.

Smith, D.R., Automating the Development of Software, Proceedings of the Fifth Annual
Knowledge-Based Software Assistant Conference, Liverpool, New York, September, 1990,
13-27.

Smith, D.R. and Lowry, M.R., Algorithm Theories and Design Tactics, invited paper to
appear in a special issue on the Mathematics of Program Construction, Science of Computer
Programming, 1990.

Smith, D.R., KIDS: A Semi-Automated Program Development System, abstract to appear
in Proceedings of SIGSOFT 90, Irvine, California, December, 1990.

7

Smith, D.R., KIDS: A Knowledge-Based Software Development System, to appear in Au-
tomating Software Dezign, Eds. M. Lowry and R. McCartney, Live Oak Press, Menlo Park,
1991.

Smith, D.R., Structure and Design of Problem Reduction Generators, submitted to IFIP
WG2.1 TC2 Conference on Specification and Transformation of Programs, September 1990.

Smith, D.R., Structure and Design of Global Search Algorithms, accepted for publication in
Acta Informatica.

3.2. Presentations

Michael R. Lowry:

Presented a talk entitled "Problem Reformulation through Abstraction, then Implementa-
tion", Price Waterhouse Technology Center, 16 Novemeber 1989.

Presented a talk entitled "Problem Reformulation through Abstraction, then Implementa-
tion", University of Ottawa Computer Science Colloquium, 21 November 1989.

Presented a talk entitled "Problem Reformulation through Abstraction, then Implementa-
tion", University of Toronto Computer Science Colloquium, 23 November 1989.

Presented a talk entitled "Problem Reformulation through Abstraction, then Implementa-
tion", AT&T Bell Laboratories, 29 November 1989.

Presented a talk entitled "Problem Reformulation through Abstraction, then Implementa-
tion", Rutgers University Computer Science Colloquium, 30 November 1989.

Presented a talk entitled "A Comparison of Approaches to Problem Reformulation", Rutgers
University Machine Learning Seminar, 1 December 1990.

Presented an informal talk entitled "Kestrel's Approach to Software Refinement", British
Computer Society Third Refinement Workshop, 11 January 1990.

Presented a talk entitled "Category Theory and Isomorphic Reformulation", Workshop on
Change of Representation and Problem Reformulation, Menlo Park, 24 March 1990.

Presented a talk entitled "Problem Reformulation through Abstraction, then Implementa-
tion", Workshop on Change of Representation and Problem Reformulation Menlo Park, 24
March 1990.

Presented a talk entitled "Category Theory and Homomorhpic Reformulation", Workshop
on Algebraic Approaches to Problem Solving and Perception, Tarrytown, New York, 27 June
1990.

8

Douglas R. Smith

Presented a talk entitled "Automating the Design of Algorithms", Computer Science Semi-
nar, UCLA, Los Angeles, 14 November 1989.

Presented a talk entitled "Automating the Design of Algorithms", Information Technology
Division, Naval Research Laboratories, Washington, DC, 20 December 1989.

Presented a talk entitled "REFINE" and a Refine demo, Presented a talk entitled "Automat-
ed Algorithm Design" and KIDS demo, Naval Postgraduate School, Monterey, California,
February 1990.

Presented a talk entitled "KIDS: Knowledge-Based Software Development", San Francisco
State University, San Francisco, California, 19 April 1990.

Presented a talk entitled "Operations on Theories in KIDS", IFIP WG2.1 meeting, Burton
Manor, Burton, England, May 1990.

Presented a talk entitled "Automating the Development of Software", Symposium on Mil-
itary Informati6n Systems Engineering, Royal Signals and Radar Establishment, Malvern,
England, 8-10 May 1990.

Presented a talk and demo entitled "KIDS: Knowledge-Based Program Development", S-
tanford University, Palo Alto, CA, 24 May 1990.

Presented a talk entitled "Automating the Design of Algorithms", ONR Contractor's Work-
shop, Moscow, Idaho, 20-21 June 1990.

Presented a paper entitled "Automating the Development of Software", gave demonstrations
of KIDS, and participated in a panel on KBSA/CASE tools, Fifth Annual Knowledge-Based
Software Assistant Conference, Liverpool, New York, 25 September 1990.

3.3. Technical Reports

Smith, D.R., KIDS: A Semi-Automatic Program Development System, Technical Report
KES.U.90.1, Kestrel Institute, Palo Alto, CA, April 1990, 48 pages.

9

P.I. Name: Douglas R. Smith
Insitution: Kestrel Institute
Telephone: (415) 493-6871
E-mail: smith@kestrei.edu
Contract Title: Theory of Algorithm Structure and Design
Contract Number: N00014-90-J-1733
Reporting Period: 1 Oct 89 - 30 Sep 90

4. Description of Research Transitions and DoD Interactions

Perhaps the main "transition" of the ONR-sponsored work has been through our experimen-
tal development system, KIDS (described on the next page). We have received many requests
for the system from researchers in software automation. Copies of KIDS are now installed
at Rutgers Univ. (Mostow), Stanford Robotics Lab (Lowry/Binford), Information Sciences
Institute, USC (Balzer, Feather) and the Catholic University of Louvain, Belgium (Sintzoff).
Pending requests for copies of KIDS have come from over 40 sites in North America and
Europe.

Several briefings to DOD personel were given during the year by Dr. Smith:

Presented a talk entitled "Automating the Design of Algorithms", Information Technology
Division, Naval Research Laboratories, Washington, DC, 20 December 1989.

Presented a talk entitled "REFINE" and a Refine demo; also presented a talk entitled
"Automated Algorithm Design" and KIDS demo, Naval Postgraduate School, Monterey,
California, February 1990.

Presented a talk entitled "Automating the Development of Software", Symposium on Mil-
itary Information Systems Engineering, Royal Signals and Radar Establishment, Malvern,
England, 8-10 May 1990.

Presented a paper entitled "Automating the Development of Software", gave demonstrations
of KIDS, and participated in a panel on KBSA/CASE tools, Fifth Annual Knowledge-Based
Software Assistant Conference, Rome Air Development Center, New York, 25 September
1990.

10

P.l. Name: Douglas R. Smith
Insitution: Kestrel Institute
Telephone: (415) 493-6871
E-mail: smith@kestrel.edu
Contract Title: Theory of Algorithm Structure anc Design
Contract Number: N00014-90-J-1733
Reporting Period: 1 Oct 89 - 30 Sep 90

5. Description of Software and Hardware Prototypes

The Kestrel Interactive Development System (KIDS) provides an open architecture for ex-
perimenting with the semi-automated development of formal specifications into correct and
efficient programs. The system has components for performing algorithm design, deductive
inference, program simplification, partial evaluation, finite differencing optimizations, data
type refinement and other development operations. Although their application is interactive,
all of the KIDS operations are automatic except the algorithm design tactics which require
some interaction at present. Over fifty programs have been derived-using the system and
we believe that KIDS could be developed to the point that it becomes economical to use for
routine programming. We are not currently working on commercializing this system - it is
regarded purely as an experimental testbed.

11

P.1. Name: Douglas R. Smith
Insitution: Kestrel Institute
Telephone: (415) 493-6871
E-mail: smith@kestrel.edu
Contract Title: Theory of Algorithm Structure and Design
Contract Number: N00014-90-J-1733
Reporting Period: 1 Oct 89 - 30 Sep 90

6. Miscellaneous

Dr. Lrwry was a program committee member for workshop "Change of Representation and
Problem Reformulation", also served at same workshop as session chair for: "Applications
of Category Theory to Representation Change and Problem Reformulation" Menlo Park,
March 1990.

Dr. Lowry served as co-editor for Automating Software Design to be published by AAAI
press in early 1991.

Dr. Lowry reviewed an NSF proposal.

Dr. Smith was appointed Lecturer in Computer Science, Autumn 1989, Computer Science
Department, Stanford University. He taught CS-409, Knowledge-Based Software Environ-
ments, during the autumn quarter of 1989.

Dr. Smith is Co-Chairman and program committee member, IFIP TC2 Working Conference
on Constructing Programs from Specifications, IFIP Working Group 2.1, Asilomar Confer-
ence Center, Pacific Grove, California, May 1991.

Dr. Smith is on the program committee for the Workshop on Logical Theory for Program
Construction, to be held, 25 February - 1 March 1991, BFI, Schloss Dagstuhl, Saarbrficken,
Germany.

Dr. Smith reviewed 11 papers for various journals and books.

12

